1.	(a)	(i)	sodium chloride	(1)
		(ii) (iii)	electrolysis making soap / paper / ceramics	(1) (1)
	(b)	greer	n / yellow-green	(1)
	(c)	(i) (ii) (iii) (iv)	white / colourless bleach / oxidising agent blue alkali / alkaline / alkalinity	(1) (1) (1) (1)
				Total 8 marks
2.	(a)	(i) (ii)	only single bonds / no more atoms can be added (they contain) carbon and hydrogen only	(1) (1)
	(b)	(i) (ii)	C _n H _{2n+2} alkanes	(1) (1)
		(iii)	similar chemical properties gradation in physical properties neighbouring members differ by CH ₂	(2)
	(c)		pounds with) the same molecular formula different structures / structural formula	(1) (1)
				Total 8 marks
3.	(a)	Na⁺		(1)
	(b)	O ²⁻		(1)
	(c)	CI		(1)
	(d)	Mg		(1)
	(e)	Mg ²⁺ ,	Na ⁺ and O ²⁻	(1)
				Total 5 marks
4.	(a)	(i) (ii)	enthalpy change / energy change / heat change reaction is exothermic / heat is given out	(1) (1)
	(b)	н *	' Н	(1)
	(c)		es between molecules (determine boiling point) e are) weak	(1) (1)
	(d)	(i) (ii) (iii)	silver nitrate white precipitate AgNO ₃ (on left) AgCI and HNO ₃ (on right)	(1) (1) (1) (1)

Total 9 marks

5.	(a)	(i) (ii)	solid 25 to 100 °C	(1) (1)
	(b)	(i) (ii)	-1 each need to gain one electron to get full outer energy level / shell	(1) (1) (1)
	(c)	fluorine		(1)
	(d)	(i) (ii)	$\text{CI}_2 + 2\text{KBr} \rightarrow 2\text{KCI} + \text{Br}_2$ reagents and products balancing solution becomes red / orange / brown / yellow	(1) (1) (1)
	(e)	simpl	$_{=0.421}$; CI: $\frac{30.0}{35.5} = 0.845$; I: $\frac{53.6}{127} = 0.422$ ification of ratio / dividing all by 0.421 i.e. K =1; CI = 2; I = 1 ct formula: KCI ₂ I	(1) (1) (1)
			Total 12	marks
6.	(a)	(i) (ii)	needs lots of energy / container would melt cryolite has a lower melting point aluminium oxide dissolves in molten cryolite OR	(1) (1) (1)
			mixture of aluminium oxide and cryolite has lower melting point	(1) (1)
	(b)	Al ³⁺ + 3e ⁻ → Al species correct balanced		(1) (1)
	(c)	O ²⁻ / oxide lost electrons		(1) (1)
	(d)	carbon / graphite (electrode) reacts with oxygen formed makes carbon dioxide / carbon monoxide		(1) (1) (1)

Total 10 marks

7.	(a)	no m	ore bubbles	(1)	
	(b)	(i) (ii) (iii) (iv) (v)	138 2.76 ÷ 138 = 0.02 (moles) 44 44 x 0.02 = 0.88 (g) 0.02 x 24 = 0.48 (dm ³)	(1) (1) (1) (1) (1)	
	(c)	(i) (ii)	flame test / description of flame test lilac add dilute hydrochloric acid test gas with acidified K ₂ Cr ₂ O ₇ / (damp) blue litmus orange to green / goes red NB If no test, can score last mark by stating SO ₂ produced OR	(1) (1)	
			add barium chloride followed by hydrochloric acid white precipitate which dissolves on adding hydrochloric acid	(1) (1) (1)	
			Total 11 r	narks	
8.	(a)	(refi	nery) gases	(1)	
	(b)	(i) (ii)	high temperature / alumina catalyst fractional distillation of crude oil produces more long chain fractions than required	(1) (1)	
	(c)	exotl	nermic		
	(d)	(i) (ii)	$2\text{CH}_4 + 3\text{O}_2 \rightarrow 2\text{CO} + 4\text{H}_2\text{O}$ (accept equation to produce C) all reagents and products correct = 1 balancing = 1 CO poisonous / toxic reduces ability of blood to carry oxygen / correct reference to haemoglobin	(1) (1) (1)	
			Total 8 r	narks	
9.	(a)	(i) (ii)	natural gas / oil NOT methane $H_2O + CH_4 \rightarrow CO + 3H_2$ correct species	(1) (1)	
		(iii)	balancing ALLOW correct equation producing hydrogen from cracking iron	(1) (1)	
	(b)	(i) (ii) (iii)	forward and reverse reactions take place same rate / concentrations do not change more / increases less / decreases	(1) (1) (1) (1)	
	(c)	(i) (ii)	acid rain kills trees kills fish damages buildings any two	(1) (2)	

10.	(a)	Each C bonded to 4 others arranged tetrahedrally each C held rigidly in place/strong bonds need to be broken to deform structure		
	(b)	Each C bonded to 3 others arranged in layers of hexagons weak forces between layers/layers can slide over each other	(1) (1) (1)	
	(c)	strong (covalent) bonds (between atoms) need lots of energy to overcome/break	(1) (1)	

Total 8 marks

PAPER TOTAL 90 MARKS